Snapshot: Vanishing meadows

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversive meadows and divisive meadows

An inversive meadow is a commutative ring with identity and a total multiplicative inverse operation satisfying 0 = 0. Previously, inversive meadows were shortly called meadows. In this paper, we introduce divisive meadows, which are inversive meadows with the multiplicative inverse operation replaced by a division operation. We introduce a translation from the terms over the signature of divis...

متن کامل

Arithmetical meadows

An inversive meadow is a commutative ring with identity equipped with a total multiplicative inverse operation satisfying 0 −1 = 0. Previously, inversive meadows were shortly called meadows. A divisive meadow is an inversive meadows with the multiplicative inverse operation replaced by a division operation. In the spirit of Peacock's arithmetical algebra, we introduce variants of inversive and ...

متن کامل

Differential Meadows

A meadow is a zero totalised field (0 = 0), and a cancellation meadow is a meadow without proper zero divisors. In this paper we consider differential meadows, i.e., meadows equipped with differentiation operators. We give an equational axiomatization of these operators and thus obtain a finite basis for differential cancellation meadows. Using the Zariski topology we prove the existence of a d...

متن کامل

Square root meadows

Let Q0 denote the rational numbers expanded to a meadow by totalizing inversion such that 0 = 0. Q0 can be expanded by a total sign function s that extracts the sign of a rational number. In this paper we discuss an extension Q0(s, √ ) of the signed rationals in which every number has a unique square root.

متن کامل

Vanishing Vanishing Cycles

If A• is a bounded, constructible complex of sheaves on a complex analytic space X, and f : X → C and g : X → C are complex analytic functions, then the iterated vanishing cycles φg[−1](φf [−1]A •) are important for a number of reasons. We give a formula for the stalk cohomology H∗(φg[−1]φf [−1]A •)x in terms of relative polar curves, algebra, and the normal Morse data and micro-support of A•.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 2009

ISSN: 0028-0836,1476-4687

DOI: 10.1038/460017b